Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Curr Med Chem ; 30(1): 30-58, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35352637

RESUMO

The abuse and incorrect administration of antibiotics has resulted in an increased proliferation of bacteria that exhibit drug resistance. The emergence of resistant bacteria has become one of the biggest health concerns globally, and an enormous effort has been made to combat them. However, despite the efforts, the emergence of resistant strains is rapidly increasing, while the discovery of new classes of antibiotics has lagged. For this reason, it is pivotal to acquire a more detailed knowledge of bacterial resistance mechanisms and the mechanism of action of substances with antibacterial effects to identify biomarkers, therapeutic targets, and the development of new antibiotics. Metabolomics and proteomics, combined with mass spectrometry for data acquisition, are suitable techniques and have already been applied successfully. This review presents basic aspects of the metabolomic and proteomic approaches and their application for the elucidation of bacterial resistance mechanisms.


Assuntos
Antibacterianos , Bactérias , Farmacorresistência Bacteriana , Espectrometria de Massas , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias/efeitos dos fármacos , Bactérias/genética , Infecções Bacterianas/microbiologia , Metabolômica , Proteômica , Farmacorresistência Bacteriana/genética
2.
Molecules ; 25(17)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882836

RESUMO

Giardiasis is a diarrheal disease that is highly prevalent in developing countries. Several drugs are available for the treatment of this parasitosis; however, failures in drug therapy are common, and have adverse effects and increased resistance of the parasite to the drug, generating the need to find new alternative treatments. In this study, we synthesized a series of 2-mercaptobenzimidazoles that are derivatives of omeprazole, and the chemical structures were confirmed through mass, 1H NMR, and 13C NMR techniques. The in vitro efficacy compounds against Giardia, as well as its effect on the inhibition of triosephosphate isomerase (TPI) recombinant, were investigated, the inactivation assays were performed with 0.2 mg/mL of the enzyme incubating for 2 h at 37 °C in TE buffer, pH 7.4 with increasing concentrations of the compounds. Among the target compounds, H-BZM2, O2N-BZM7, and O2N-BZM9 had greater antigiardial activity (IC50: 36, 14, and 17 µM on trophozoites), and inhibited the TPI enzyme (K2: 2.3, 3.2, and 2.8 M-1 s-1) respectively, loading alterations on the secondary structure, global stability, and tertiary structure of the TPI protein. Finally, we demonstrated that it had low toxicity on Caco-2 and HT29 cells. This finding makes it an attractive potential starting point for new antigiardial drugs.


Assuntos
Antiprotozoários/farmacologia , Benzimidazóis/farmacologia , Giardia lamblia/efeitos dos fármacos , Omeprazol/farmacologia , Antiprotozoários/síntese química , Antiprotozoários/química , Benzimidazóis/síntese química , Benzimidazóis/química , Células CACO-2 , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dicroísmo Circular , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Giardia lamblia/enzimologia , Células HT29 , Humanos , Cinética , Lansoprazol/farmacologia , Simulação de Acoplamento Molecular , Omeprazol/síntese química , Omeprazol/química , Espectrometria de Fluorescência , Triose-Fosfato Isomerase/antagonistas & inibidores , Triose-Fosfato Isomerase/química , Trofozoítos/efeitos dos fármacos
3.
Int J Mol Sci ; 21(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650494

RESUMO

This report describes a functional and structural analysis of fused glucose-6-phosphate dehydrogenase dehydrogenase-phosphogluconolactonase protein from the protozoan Trichomonas vaginalis (T. vaginalis). The glucose-6-phosphate dehydrogenase (g6pd) gene from T. vaginalis was isolated by PCR and the sequence of the product showed that is fused with 6pgl gene. The fused Tvg6pd::6pgl gene was cloned and overexpressed in a heterologous system. The recombinant protein was purified by affinity chromatography, and the oligomeric state of the TvG6PD::6PGL protein was found as tetramer, with an optimal pH of 8.0. The kinetic parameters for the G6PD domain were determined using glucose-6-phosphate (G6P) and nicotinamide adenine dinucleotide phosphate (NADP+) as substrates. Biochemical assays as the effects of temperature, susceptibility to trypsin digestion, and analysis of hydrochloride of guanidine on protein stability in the presence or absence of NADP+ were performed. These results revealed that the protein becomes more stable in the presence of the NADP+. In addition, we determined the dissociation constant for the binding (Kd) of NADP+ in the protein and suggests the possible structural site in the fused TvG6PD::6PGL protein. Finally, computational modeling studies were performed to obtain an approximation of the structure of TvG6PD::6PGL. The generated model showed differences with the GlG6PD::6PGL protein (even more so with human G6PD) despite both being fused.


Assuntos
Hidrolases de Éster Carboxílico/genética , Estabilidade Enzimática/genética , Glucosefosfato Desidrogenase/genética , NADP/genética , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Trichomonas vaginalis/genética , Sequência de Aminoácidos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Estabilidade Proteica , Alinhamento de Sequência , Temperatura
4.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326520

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most frequent human enzymopathy, affecting over 400 million people globally. Worldwide, 217 mutations have been reported at the genetic level, and only 19 have been found in Mexico. The objective of this work was to contribute to the knowledge of the function and structure of three single natural variants (G6PD A+, G6PD San Luis Potosi, and G6PD Guadalajara) and a double mutant (G6PD Mount Sinai), each localized in a different region of the three-dimensional (3D) structure. In the functional characterization of the mutants, we observed a decrease in specific activity, protein expression and purification, catalytic efficiency, and substrate affinity in comparison with wild-type (WT) G6PD. Moreover, the analysis of the effect of all mutations on the structural stability showed that its presence increases denaturation and lability with temperature and it is more sensible to trypsin digestion protease and guanidine hydrochloride compared with WT G6PD. This could be explained by accelerated degradation of the variant enzymes due to reduced stability of the protein, as is shown in patients with G6PD deficiency.


Assuntos
Deficiência de Glucosefosfato Desidrogenase/enzimologia , Deficiência de Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/metabolismo , Naftalenossulfonato de Anilina/química , Catálise , Dicroísmo Circular , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/isolamento & purificação , Deficiência de Glucosefosfato Desidrogenase/metabolismo , Guanidina , Humanos , Cinética , México , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Estabilidade Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Software , Temperatura , Tripsina/química
5.
Microorganisms ; 8(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878282

RESUMO

Triosephosphate isomerase (TPI) is a glycolysis enzyme, which catalyzes the reversible isomerization between dihydroxyactetone-3-phosphate (DHAP) and glyceraldehyde-3-phosphate (GAP). In pathogenic organisms, TPI is essential to obtain the energy used to survive and infect. Fusarium oxisporum (Fox) is a fungus of biotechnological importance due to its pathogenicity in different organisms, that is why the relevance of also biochemically analyzing its TPI, being the first report of its kind in a Fusarium. Moreover, the kinetic characteristics or structural determinants related to its function remain unknown. Here, the Tpi gene from F. oxysporum was isolated, cloned, and overexpressed. The recombinant protein named FoxTPI was purified (97% purity) showing a molecular mass of 27 kDa, with optimal activity at pH 8.0 and and temperature of 37 °C. The values obtained for Km and Vmax using the substrate GAP were 0.47 ± 0.1 mM, and 5331 µmol min-1 mg-1, respectively. Furthemore, a protein structural modeling showed that FoxTPI has the classical topology of TPIs conserved in other organisms, including the catalytic residues conserved in the active site (Lys12, His94 and Glu164). Finally, when FoxTPI was analyzed with inhibitors, it was found that one of them inhibits its activity, which gives us the perspective of future studies and its potential use against this pathogen.

6.
Int J Mol Sci ; 20(21)2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31652968

RESUMO

Gluconacetobacter diazotrophicus PAL5 (GDI) is an endophytic bacterium with potential biotechnological applications in industry and agronomy. The recent description of its complete genome and its principal metabolic enzymes suggests that glucose metabolism is accomplished through the pentose phosphate pathway (PPP); however, the enzymes participating in this pathway have not yet been characterized in detail. The objective of the present work was to clone, purify, and biochemically and physicochemically characterize glucose-6-phosphate dehydrogenase (G6PD) from GDI. The gene was cloned and expressed as a tagged protein in E. coli to be purified by affinity chromatography. The native state of the G6PD protein in the solution was found to be a tetramer with optimal activity at pH 8.8 and a temperature between 37 and 50 °C. The apparent Km values for G6P and nicotinamide adenine dinucleotide phosphate (NADP+) were 63 and 7.2 µM, respectively. Finally, from the amino acid sequence a three-dimensional (3D) model was obtained, which allowed the arrangement of the amino acids involved in the catalytic activity, which are conserved (RIDHYLGKE, GxGGDLT, and EKPxG) with those of other species, to be identified. This characterization of the enzyme could help to identify new environmental conditions for the knowledge of the plant-microorganism interactions and a better use of GDI in new technological applications.


Assuntos
Clonagem Molecular , Gluconacetobacter/enzimologia , Glucosefosfato Desidrogenase/metabolismo , Escherichia coli/metabolismo , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/genética , Concentração de Íons de Hidrogênio , Cinética , NADP/metabolismo , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Temperatura
7.
Toxins (Basel) ; 11(2)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717279

RESUMO

Zoanthids of the genus Palythoa are distributed worldwide in shallow waters around coral reefs. Like all cnidarians, they possess nematocysts that contain a large diversity of toxins that paralyze their prey. This work was aimed at isolating and functionally characterizing a cnidarian neurotoxic phospholipase named A2-PLTX-Pcb1a for the first time. This phospholipase was isolated from the venomous extract of the zoanthid Palythoa caribaeorum. This enzyme, which is Ca2+-dependent, is a 149 amino acid residue protein. The analysis of the A2-PLTX-Pcb1a sequence showed neurotoxic domain similitude with other neurotoxic sPLA2´s, but a different catalytic histidine domain. This is remarkable, since A2-PLTX-Pcb1a displays properties like those of other known PLA2 enzymes.


Assuntos
Antozoários , Córtex Motor/efeitos dos fármacos , Síndromes Neurotóxicas , Neurotoxinas/toxicidade , Fosfolipases A2/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Atividade Motora/efeitos dos fármacos , Córtex Motor/patologia , Neurotoxinas/química , Neurotoxinas/isolamento & purificação , Fosfolipases A2/química , Fosfolipases A2/isolamento & purificação , Ratos Wistar
8.
Artigo em Inglês | MEDLINE | ID: mdl-29692802

RESUMO

BACKGROUND: Cnidarian venoms and extracts have shown a broad variety of biological activities including cytotoxic, antibacterial and antitumoral effects. Most of these studied extracts were obtained from sea anemones or jellyfish. The present study aimed to determine the toxic activity and assess the antitumor and antiparasitic potential of Palythoa caribaeorum venom by evaluating its in vitro toxicity on several models including human tumor cell lines and against the parasite Giardia intestinalis. METHODS: The presence of cytolysins and vasoconstrictor activity of P. caribaeorum venom were determined by hemolysis, PLA2 and isolated rat aortic ring assays, respectively. The cytotoxic effect was tested on HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma), K562 (human chronic myelogenous leukemia), U251 (human glyoblastoma), PC-3 (human prostatic adenocarcinoma) and SKLU-1 (human lung adenocarcinoma). An in vivo toxicity assay was performed with crickets and the antiparasitic assay was performed against G. intestinalis at 24 h of incubation. RESULTS: P. caribaeorum venom produced hemolytic and PLA2 activity and showed specific cytotoxicity against U251 and SKLU-1 cell lines, with approximately 50% growing inhibition. The venom was toxic to insects and showed activity against G. intestinalis in a dose-dependent manner by possibly altering its membrane osmotic equilibrium. CONCLUSION: These results suggest that P. caribaeorum venom contains compounds with potential therapeutic value against microorganisms and cancer.

9.
J. venom. anim. toxins incl. trop. dis ; 24: 1-7, 2018. graf, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1484749

RESUMO

Background Cnidarian venoms and extracts have shown a broad variety of biological activities including cytotoxic, antibacterial and antitumoral effects. Most of these studied extracts were obtained from sea anemones or jellyfish. The present study aimed to determine the toxic activity and assess the antitumor and antiparasitic potential of Palythoa caribaeorum venom by evaluating its in vitro toxicity on several models including human tumor cell lines and against the parasite Giardia intestinalis. Methods The presence of cytolysins and vasoconstrictor activity of P. caribaeorum venom were determined by hemolysis, PLA2 and isolated rat aortic ring assays, respectively. The cytotoxic effect was tested on HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma), K562 (human chronic myelogenous leukemia), U251 (human glyoblastoma), PC-3 (human prostatic adenocarcinoma) and SKLU-1 (human lung adenocarcinoma). An in vivo toxicity assay was performed with crickets and the antiparasitic assay was performed against G. intestinalis at 24 h of incubation. Results P. caribaeorum venom produced hemolytic and PLA2 activity and showed specific cytotoxicity against U251 and SKLU-1 cell lines, with approximately 50% growing inhibition. The venom was toxic to insects and showed activity against G. intestinalis in a dose-dependent manner by possibly altering its membrane osmotic equilibrium. Conclusion These results suggest that P. caribaeorum venom contains compounds with potential therapeutic value against microorganisms and cancer.


Assuntos
Animais , Antígenos de Neoplasias/análise , Antígenos de Protozoários/análise , Citotoxinas/análise , Venenos de Cnidários/efeitos adversos , Venenos de Cnidários/toxicidade , Venenos de Cnidários/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais
10.
J. venom. anim. toxins incl. trop. dis ; 24: 12, 2018. graf, ilus
Artigo em Inglês | LILACS | ID: biblio-894176

RESUMO

Cnidarian venoms and extracts have shown a broad variety of biological activities including cytotoxic, antibacterial and antitumoral effects. Most of these studied extracts were obtained from sea anemones or jellyfish. The present study aimed to determine the toxic activity and assess the antitumor and antiparasitic potential of Palythoa caribaeorum venom by evaluating its in vitro toxicity on several models including human tumor cell lines and against the parasite Giardia intestinalis. Methods: The presence of cytolysins and vasoconstrictor activity of P. caribaeorum venom were determined by hemolysis, PLA2 and isolated rat aortic ring assays, respectively. The cytotoxic effect was tested on HCT-15 (human colorectal adenocarcinoma), MCF-7 (human mammary adenocarcinoma), K562 (human chronic myelogenous leukemia), U251 (human glyoblastoma), PC-3 (human prostatic adenocarcinoma) and SKLU-1 (human lung adenocarcinoma). An in vivo toxicity assay was performed with crickets and the antiparasitic assay was performed against G. intestinalis at 24 h of incubation. Results: P. caribaeorum venom produced hemolytic and PLA2 activity and showed specific cytotoxicity against U251 and SKLU-1 cell lines, with approximately 50% growing inhibition. The venom was toxic to insects and showed activity against G. intestinalis in a dose-dependent manner by possibly altering its membrane osmotic equilibrium. Conclusion: These results suggest that P. caribaeorum venom contains compounds with potential therapeutic value against microorganisms and cancer.(AU)


Assuntos
Animais , Masculino , Ratos , Giardíase/terapia , Giardia lamblia/parasitologia , Venenos de Cnidários/antagonistas & inibidores , Venenos de Cnidários/toxicidade , Anticarcinógenos , Ratos Wistar , Venenos de Cnidários/uso terapêutico , Hemolíticos
11.
Int J Mol Sci ; 17(5)2016 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-27213370

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency in humans causes severe disease, varying from mostly asymptomatic individuals to patients showing neonatal jaundice, acute hemolysis episodes or chronic nonspherocytic hemolytic anemia. In order to understand the effect of the mutations in G6PD gene function and its relation with G6PD deficiency severity, we report the construction, cloning and expression as well as the detailed kinetic and stability characterization of three purified clinical variants of G6PD that present in the Mexican population: G6PD Zacatecas (Class I), Vanua-Lava (Class II) and Viangchan (Class II). For all the G6PD mutants, we obtained low purification yield and altered kinetic parameters compared with Wild Type (WT). Our results show that the mutations, regardless of the distance from the active site where they are located, affect the catalytic properties and structural parameters and that these changes could be associated with the clinical presentation of the deficiency. Specifically, the structural characterization of the G6PD Zacatecas mutant suggests that the R257L mutation have a strong effect on the global stability of G6PD favoring an unstable active site. Using computational analysis, we offer a molecular explanation of the effects of these mutations on the active site.


Assuntos
Indígena Americano ou Nativo do Alasca/genética , Deficiência de Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/química , Glucosefosfato Desidrogenase/genética , Mutação , Domínio Catalítico , Clonagem Molecular , Biologia Computacional/métodos , Cristalografia por Raios X , Glucosefosfato Desidrogenase/metabolismo , Humanos , Cinética , México , Modelos Moleculares , Estabilidade Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...